A correct interpretation of diffuse solar radiation measurements made by Differential Optical Absorption Spectroscopy (DOAS) remote sensors require the use of radiative transfer models of the atmosphere. The simplest models consider radiation scattering in the atmosphere as a single scattering process. More realistic atmospheric models are those which consider multiple scattering and their application is useful and essential for the analysis of zenith and off-axis measurements regarding the lowest layers of the atmosphere, such as the boundary layer. These are characterized by the highest values of air density and quantities of particles and aerosols acting as scattering nuclei.

PROMSAR: A backward Monte Carlo spherical RTM for the analysis of DOAS remote sensing measurements

Palazzi E;Giovanelli G;Bortoli D;Ravegnani F;
2006

Abstract

A correct interpretation of diffuse solar radiation measurements made by Differential Optical Absorption Spectroscopy (DOAS) remote sensors require the use of radiative transfer models of the atmosphere. The simplest models consider radiation scattering in the atmosphere as a single scattering process. More realistic atmospheric models are those which consider multiple scattering and their application is useful and essential for the analysis of zenith and off-axis measurements regarding the lowest layers of the atmosphere, such as the boundary layer. These are characterized by the highest values of air density and quantities of particles and aerosols acting as scattering nuclei.
2006
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact