High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect.
Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions
Bentini GG;Bianconi M;
2005
Abstract
High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.