In membrane-based water purification technology, control of the membrane pore structure is fundamental to defining its performance. The present study investigates the effect of the preparation conditions on the final pore size distribution and on the dye removal efficiency of cellulose acetate membranes. The membranes were fabricated by means of phase inversion (using different speeds of film casting and different thicknesses of the casted solution) and introducing modifications in the preparation conditions, such as the use of a coagulation bath instead of pure water and the addition of a surfactant as a solution additive. Both isotropic and anisotropic membranes could be fabricated, and the membranes' pore size, porosity, and water permeability were found to be greatly influenced by the fabrication conditions. The removal capacity towards different types of water contaminants was investigated, considering, as model dyes, Azure A and Methyl Orange. Azure A was removed with higher efficiency due to its better chemical affinity for cellulose acetate, and for both dyes the uptake could be fitted using a pseudo-second order model, evidencing that the rate-limiting step is chemisorption involving valency forces through the sharing or exchange of electrons between the dye and the membrane.

Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes

R E Morsi;F Corticelli;V Morandi;D Gentili;M Cavallini;A Figoli;F Russo;F Galiano;A Aluigi;B Ventura
2023

Abstract

In membrane-based water purification technology, control of the membrane pore structure is fundamental to defining its performance. The present study investigates the effect of the preparation conditions on the final pore size distribution and on the dye removal efficiency of cellulose acetate membranes. The membranes were fabricated by means of phase inversion (using different speeds of film casting and different thicknesses of the casted solution) and introducing modifications in the preparation conditions, such as the use of a coagulation bath instead of pure water and the addition of a surfactant as a solution additive. Both isotropic and anisotropic membranes could be fabricated, and the membranes' pore size, porosity, and water permeability were found to be greatly influenced by the fabrication conditions. The removal capacity towards different types of water contaminants was investigated, considering, as model dyes, Azure A and Methyl Orange. Azure A was removed with higher efficiency due to its better chemical affinity for cellulose acetate, and for both dyes the uptake could be fitted using a pseudo-second order model, evidencing that the rate-limiting step is chemisorption involving valency forces through the sharing or exchange of electrons between the dye and the membrane.
2023
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto per la Tecnologia delle Membrane - ITM
cellulose acetate
polymeric membrane
pore structure
water treatment
File in questo prodotto:
File Dimensione Formato  
prod_478971-doc_203016.pdf

accesso aperto

Descrizione: Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.56 MB
Formato Adobe PDF
7.56 MB Adobe PDF Visualizza/Apri
prod_478971-doc_203017.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact