Water electrolyzers based on anion exchange membranes (AEM) enable the use of platinum group metal-free catalysts, substantially lowering the capital costs of this technology and thereby reducing the price of green hydrogen. Their industrial adoption is limited by the poor durability of AEMs, precluding long term operation. A very promising class of AEMs in terms of stability are poly(aryl piperidiniums)s (PAPs), which combine an heteroatom free backbone with the stable piperidinium cationic group. The simplest and less expensive chemistry in this family is based on poly(biphenyl piperidinium), which has so far been considered unsuitable for membrane fabrication due to poor mechanical properties. Through optimized polymerization parameters we obtained mechanically resistant films down to a thickness of 15 ?m. The membranes reach an ambitious conductivity of 185 mS cm (80 °C, 100% RH) with almost no degradation signs after 360 h in 1 M KOH at 80 °C. Importantly, we demonstrate their viability in an electrolyzer cell, outperforming a PAP-based commercial membrane. We believe that these results present strong potential for not expensive AEMs with an easy synthesis, that will serve as a benchmark for further optimization of PAP-based polymers.

Synthesis, characterization and water electrolyzer cell tests of poly(biphenyl piperidinium) Anion exchange membranes

Santoro M;Gatto I;Baglio V;
2023

Abstract

Water electrolyzers based on anion exchange membranes (AEM) enable the use of platinum group metal-free catalysts, substantially lowering the capital costs of this technology and thereby reducing the price of green hydrogen. Their industrial adoption is limited by the poor durability of AEMs, precluding long term operation. A very promising class of AEMs in terms of stability are poly(aryl piperidiniums)s (PAPs), which combine an heteroatom free backbone with the stable piperidinium cationic group. The simplest and less expensive chemistry in this family is based on poly(biphenyl piperidinium), which has so far been considered unsuitable for membrane fabrication due to poor mechanical properties. Through optimized polymerization parameters we obtained mechanically resistant films down to a thickness of 15 ?m. The membranes reach an ambitious conductivity of 185 mS cm (80 °C, 100% RH) with almost no degradation signs after 360 h in 1 M KOH at 80 °C. Importantly, we demonstrate their viability in an electrolyzer cell, outperforming a PAP-based commercial membrane. We believe that these results present strong potential for not expensive AEMs with an easy synthesis, that will serve as a benchmark for further optimization of PAP-based polymers.
2023
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Hydrogen
Electrolysis
Anion exchange membrane
Piperidinium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact