We explore the sources of forecast uncertainty in a mixed dynamical-stochastic ensemble prediction chain for small-scale precipitation, suitable for hydrological applications. To this end, we apply the stochastic downscaling method RainFARM to each member of ensemble limited-area forecasts provided by the COSMO-LEPS system. Aim of the work is to quantitatively compare the relative weights of the meteorological uncertainty associated with large-scale synoptic conditions (represented by the ensemble of dynamical forecasts) and of the uncertainty due to small-scale processes (represented by the set of fields generated by stochastic downscaling). We show that, in current operational configurations. small- and larae-scale uncertainties have roughly the same weight. These results can be used to pinpoint the specific components of the prediction chain where a better estimate of forecast uncertainty is needed.

Meteorological uncertainty and rainfall downscaling

Von Hardenberg J;Provenzale A
2007

Abstract

We explore the sources of forecast uncertainty in a mixed dynamical-stochastic ensemble prediction chain for small-scale precipitation, suitable for hydrological applications. To this end, we apply the stochastic downscaling method RainFARM to each member of ensemble limited-area forecasts provided by the COSMO-LEPS system. Aim of the work is to quantitatively compare the relative weights of the meteorological uncertainty associated with large-scale synoptic conditions (represented by the ensemble of dynamical forecasts) and of the uncertainty due to small-scale processes (represented by the set of fields generated by stochastic downscaling). We show that, in current operational configurations. small- and larae-scale uncertainties have roughly the same weight. These results can be used to pinpoint the specific components of the prediction chain where a better estimate of forecast uncertainty is needed.
2007
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact