The co-delivery of anticancer drugs into tumor cells by a nanocarrier may provide a new paradigm in chemotherapy. Temozolomide and curcumin are anticancer drugs with a synergistic effect in the treatment of multiform glioblastoma. In this study, the entrapment and co-entrapment of temozolomide and curcumin in a p-sulfonato-calix[4]arene nanoparticle was investigated by NMR spectroscopy, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. Critical micellar concentration, nanoparticle size, zeta potential, drug loading percentage, and thermodynamic parameters were all consistent with a drug delivery system. Our data showed that temozolomide is hosted in the cavity of the calix[4]arene building blocks while curcumin is entrapped within the nanoparticle. Isothermal titration calorimetry evidenced that drug complexation and entrapment are entropy driven processes. The loading in the calixarene-based nanocontainer enhanced the solubility and half-life of both drugs, whose medicinal efficacy is affected by low solubility and rapid degradation. The calixarene-based nanocontainer appears to be a promising new candidate for nanocarrier-based drug combination therapy for glioblastoma.

Co-Loading of Temozolomide and Curcumin into a Calix[4]arene-Based Nanocontainer for Potential Combined Chemotherapy: Binding Features, Enhanced Drug Solubility and Stability in Aqueous Medium

D'antona N;Consoli GML
Ultimo
2021

Abstract

The co-delivery of anticancer drugs into tumor cells by a nanocarrier may provide a new paradigm in chemotherapy. Temozolomide and curcumin are anticancer drugs with a synergistic effect in the treatment of multiform glioblastoma. In this study, the entrapment and co-entrapment of temozolomide and curcumin in a p-sulfonato-calix[4]arene nanoparticle was investigated by NMR spectroscopy, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. Critical micellar concentration, nanoparticle size, zeta potential, drug loading percentage, and thermodynamic parameters were all consistent with a drug delivery system. Our data showed that temozolomide is hosted in the cavity of the calix[4]arene building blocks while curcumin is entrapped within the nanoparticle. Isothermal titration calorimetry evidenced that drug complexation and entrapment are entropy driven processes. The loading in the calixarene-based nanocontainer enhanced the solubility and half-life of both drugs, whose medicinal efficacy is affected by low solubility and rapid degradation. The calixarene-based nanocontainer appears to be a promising new candidate for nanocarrier-based drug combination therapy for glioblastoma.
2021
Istituto di Chimica Biomolecolare - ICB - Sede Secondaria Catania
calix[4]arene-based nanoparticle
temozolomide
curcumin
drug delivery
binding interactions
drug combination
File in questo prodotto:
File Dimensione Formato  
Migliore et al. Nanomaterials 2021.pdf

accesso aperto

Descrizione: Co-Loading of Temozolomide and Curcumin into a Calix[4]arene-Based Nanocontainer for Potential Combined Chemotherapy
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/438167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact