An analytical model that predicts how much of the temperature-humidity covariance within the marine atmospheric surface layer (ASL) originates just above the ASL and just near the surface is proposed and tested using observations from the Risø Air Sea Experiment (RASEX). The model is based on a simplified budget for the two-scalar covariance that retains three basic terms: production, dissipation, and vertical transport. Standard second-order closure formulations are employed for the triple moments and the dissipation terms, and the canonical mixing length for the closure model is assumed linear with height (z) from the surface. Despite the poor performance of the gradient-diffusion closure in reproducing the measured triple moment, the overall covariance model was shown to be sufficiently robust to these assumptions. One of the main findings from the analytical treatment is the origin of the asymmetry in how the top and bottom boundary conditions affect the two-scalar covariance in the ASL. The analytical model reveals that 'bottom-up' boundary-condition variations scale with z-a , while 'top-down' variations scale with za , where a is a constant that can be derived from similarity and closure constants. The genesis of this asymmetry stems from the flux-transport term but is modulated by the dissipation, and persists even in the absence of any inhomogeneity in the local production function. It is shown that the local production function acts to adjust the relative proportions of these two boundary conditions with weights that vary with the Obukhov length. The findings here do not provide 'finality' to the discussions on the covariance between humidity and temperature or the role of entrainment in modulating the turbulence within the ASL. Rather, they are intended to guide new hypotheses about interpretations of existing field data and identify needs for future field and numerical experiments.

The temperature-humidity covariance in the marine surface layer: A one-dimensional analytical model.

Sempreviva AM;Cava D
2008

Abstract

An analytical model that predicts how much of the temperature-humidity covariance within the marine atmospheric surface layer (ASL) originates just above the ASL and just near the surface is proposed and tested using observations from the Risø Air Sea Experiment (RASEX). The model is based on a simplified budget for the two-scalar covariance that retains three basic terms: production, dissipation, and vertical transport. Standard second-order closure formulations are employed for the triple moments and the dissipation terms, and the canonical mixing length for the closure model is assumed linear with height (z) from the surface. Despite the poor performance of the gradient-diffusion closure in reproducing the measured triple moment, the overall covariance model was shown to be sufficiently robust to these assumptions. One of the main findings from the analytical treatment is the origin of the asymmetry in how the top and bottom boundary conditions affect the two-scalar covariance in the ASL. The analytical model reveals that 'bottom-up' boundary-condition variations scale with z-a , while 'top-down' variations scale with za , where a is a constant that can be derived from similarity and closure constants. The genesis of this asymmetry stems from the flux-transport term but is modulated by the dissipation, and persists even in the absence of any inhomogeneity in the local production function. It is shown that the local production function acts to adjust the relative proportions of these two boundary conditions with weights that vary with the Obukhov length. The findings here do not provide 'finality' to the discussions on the covariance between humidity and temperature or the role of entrainment in modulating the turbulence within the ASL. Rather, they are intended to guide new hypotheses about interpretations of existing field data and identify needs for future field and numerical experiments.
2008
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Atmospheric surface layer
Gradient-diffusion closure
Marine surface layer
Temperature-humidity covariance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact