We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120–250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux. Using a new system to concurrently measure H2O, O3, and CO2 flux, the conventional method of calculating O3 flux generally overestimated direct measures by 25–50%.

Comparison of calculated and measured foliar O3 flux in crop and forest species.

Paoletti E;
2007

Abstract

We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120–250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux. Using a new system to concurrently measure H2O, O3, and CO2 flux, the conventional method of calculating O3 flux generally overestimated direct measures by 25–50%.
2007
PROTEZIONE DELLE PIANTE
Stomatal conductance
Gas exchange
Forests
Ozone
Air pollution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/438609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact