A mean-field kinetic model suggests that the relaxation dynamics of wormlike micellar networks is a long and complex process due to the problem of reducing the number of free end-caps (or dangling ends) while also reaching an equilibrium level of branching after an earlier overgrowth. The model is validated against mesoscopic molecular dynamics simulations and is based on kinetic equations accounting for scission and synthesis processes of blobs of surfactants. A long relaxation time scale is reached with both thermal quenches and small perturbations of the system. The scaling of this relaxation time is exponential with the free energy of an end cap and with the branching free energy. We argue that the subtle end-recombination dynamics might yield effects that are difficult to detect in rheology experiments, with possible underestimates of the typical time scales of viscoelastic fluids.

The rise and fall of branching: A slowing down mechanism in relaxing wormlike micellar networks

Iubini S;
2021

Abstract

A mean-field kinetic model suggests that the relaxation dynamics of wormlike micellar networks is a long and complex process due to the problem of reducing the number of free end-caps (or dangling ends) while also reaching an equilibrium level of branching after an earlier overgrowth. The model is validated against mesoscopic molecular dynamics simulations and is based on kinetic equations accounting for scission and synthesis processes of blobs of surfactants. A long relaxation time scale is reached with both thermal quenches and small perturbations of the system. The scaling of this relaxation time is exponential with the free energy of an end cap and with the branching free energy. We argue that the subtle end-recombination dynamics might yield effects that are difficult to detect in rheology experiments, with possible underestimates of the typical time scales of viscoelastic fluids.
2021
Istituto dei Sistemi Complessi - ISC
slow relaxation
wormlike micelles
self-assembly
File in questo prodotto:
File Dimensione Formato  
prod_461188-doc_179916.pdf

solo utenti autorizzati

Descrizione: The rise and fall of branching: A slowing down mechanism in relaxing wormlike micellar networks
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.58 MB
Formato Adobe PDF
6.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/438826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact