Engineering detection dynamics in nanoscale receivers that operate in the far infrared (frequencies in the range 0.1-10 THz) is a challenging task that, however, can open intriguing perspectives for targeted applications in quantum science, biomedicine, space science, tomography, security, process and quality control. Here, we exploited InAs nanowires (NWs) to engineer antenna-coupled THz photodetectors that operated as efficient bolometers or photo thermoelectric receivers at room temperature. We controlled the core detection mechanism by design, through the different architectures of an on-chip resonant antenna, or dynamically, by varying the NW carrier density through electrostatic gating. Noise equivalent powers as low as 670 pWHz-1/2 with 1 µs response time at 2.8 THz were reached
Semiconductor nanowire field-effect transistors as sensitive detectors in the far-infrared
Asgari M;Viti L;Zannier V;Sorba L;Vitiello MS
2021
Abstract
Engineering detection dynamics in nanoscale receivers that operate in the far infrared (frequencies in the range 0.1-10 THz) is a challenging task that, however, can open intriguing perspectives for targeted applications in quantum science, biomedicine, space science, tomography, security, process and quality control. Here, we exploited InAs nanowires (NWs) to engineer antenna-coupled THz photodetectors that operated as efficient bolometers or photo thermoelectric receivers at room temperature. We controlled the core detection mechanism by design, through the different architectures of an on-chip resonant antenna, or dynamically, by varying the NW carrier density through electrostatic gating. Noise equivalent powers as low as 670 pWHz-1/2 with 1 µs response time at 2.8 THz were reachedFile | Dimensione | Formato | |
---|---|---|---|
nanomaterials-11-03378.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.