We performed a comparative study of the total bacterial communities and communities of cultivable polycyclic aromatic hydrocarbons (PAH)-degrading bacteria in different functional zones of Moscow and Murmansk that were formed under the influence of the PAH composition in road and leaf dust. The PAHs were determined by high-performance liquid chromatography (HPLC); the bacterial communities' diversity was assessed by metabarcoding. The degraders were isolated by their direct plating on a medium with the PAHs. The PAH total quantity declined in the leaf dust from the traffic to the recreational zone. For the road dust, a negative gradient with pollution was observed for Rhodococcus and Acinetobacter degraders and for their relative abundance in the microbiome for the functional zones of Moscow. The opposite effect was observed in the Murmansk leaf dust for the Rothia and Pseudomonas degraders and in the Moscow road dust for Microbacterium. The PCA and linear regression analyses showed that the Micrococcus degraders in the dust were sensitive to anthropogenic pollution, so they can be used as a tool for monitoring anthropogenic changes in the biosphere. The data on the degraders' and microbial communities' diversity suggest that minor degrading strains can play a key role in PAH degradation.

Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in Three Different Functional Zones of the Cities of Moscow and Murmansk

Olga Gavrichkova;
2022

Abstract

We performed a comparative study of the total bacterial communities and communities of cultivable polycyclic aromatic hydrocarbons (PAH)-degrading bacteria in different functional zones of Moscow and Murmansk that were formed under the influence of the PAH composition in road and leaf dust. The PAHs were determined by high-performance liquid chromatography (HPLC); the bacterial communities' diversity was assessed by metabarcoding. The degraders were isolated by their direct plating on a medium with the PAHs. The PAH total quantity declined in the leaf dust from the traffic to the recreational zone. For the road dust, a negative gradient with pollution was observed for Rhodococcus and Acinetobacter degraders and for their relative abundance in the microbiome for the functional zones of Moscow. The opposite effect was observed in the Murmansk leaf dust for the Rothia and Pseudomonas degraders and in the Moscow road dust for Microbacterium. The PCA and linear regression analyses showed that the Micrococcus degraders in the dust were sensitive to anthropogenic pollution, so they can be used as a tool for monitoring anthropogenic changes in the biosphere. The data on the degraders' and microbial communities' diversity suggest that minor degrading strains can play a key role in PAH degradation.
2022
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
PAH-degrading bacteria; polycyclic aromatic hydrocarbons; urban ecosystems; functional zones; biotopes; dust; microbiomes; adaptation
File in questo prodotto:
File Dimensione Formato  
microorganisms-10-01979-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact