An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of induced phenomena (mainly floods and landslides) into specific areas of interest. With this goal, in this work the authors focused on Calabria region (southern Italy) and classified the main precipitation systems through the analysis of selected heavy rainfall events from high resolution rain gauge network time series. Moreover, the authors investigated the relationships among the selected events and the main synoptic atmospheric patterns derived by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis dataset, in order to assess the possible large-scale scenarios which can induce heavy rainfall events in the study area. The obtained results highlighted: (i) the importance of areal reduction factors, rainfall intensities and amounts in order to discriminate the investigated precipitations systems for the study area; (ii) the crucial role played by the position of the averaged low-pressure areas over the Mediterranean for the synoptic systems, and by low-level temperature for the convective systems.
Heavy Precipitation Systems in Calabria Region (Southern Italy): High-Resolution Observed Rainfall and Large-Scale Atmospheric Pattern Analysis
Avolio ElenioUltimo
2020
Abstract
An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of induced phenomena (mainly floods and landslides) into specific areas of interest. With this goal, in this work the authors focused on Calabria region (southern Italy) and classified the main precipitation systems through the analysis of selected heavy rainfall events from high resolution rain gauge network time series. Moreover, the authors investigated the relationships among the selected events and the main synoptic atmospheric patterns derived by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis dataset, in order to assess the possible large-scale scenarios which can induce heavy rainfall events in the study area. The obtained results highlighted: (i) the importance of areal reduction factors, rainfall intensities and amounts in order to discriminate the investigated precipitations systems for the study area; (ii) the crucial role played by the position of the averaged low-pressure areas over the Mediterranean for the synoptic systems, and by low-level temperature for the convective systems.File | Dimensione | Formato | |
---|---|---|---|
water-12-01468-v2.pdf
accesso aperto
Descrizione: Water 2020, 12, 1468; doi:10.3390/w12051468
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
7.39 MB
Formato
Adobe PDF
|
7.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.