Explainable AI consists in developing mechanisms allowing for an interaction between decision systems and humans by making the decisions of the formers understandable. This is particularly important in sensitive contexts like in the medical domain. We propose a use case study, for skin lesion diagnosis, illustrating how it is possible to provide the practitioner with explanations on the decisions of a state of the art deep neural network classifier trained to characterize skin lesions from examples. Our framework consists of a trained classifier onto which an explanation module operates. The latter is able to offer the practitioner exemplars and counterexemplars for the classification diagnosis thus allowing the physician to interact with the automatic diagnosis system. The exemplars are generated via an adversarial autoencoder. We illustrate the behavior of the system on representative examples.

Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling

Metta C;Rinzivillo S
2021

Abstract

Explainable AI consists in developing mechanisms allowing for an interaction between decision systems and humans by making the decisions of the formers understandable. This is particularly important in sensitive contexts like in the medical domain. We propose a use case study, for skin lesion diagnosis, illustrating how it is possible to provide the practitioner with explanations on the decisions of a state of the art deep neural network classifier trained to characterize skin lesions from examples. Our framework consists of a trained classifier onto which an explanation module operates. The latter is able to offer the practitioner exemplars and counterexemplars for the classification diagnosis thus allowing the physician to interact with the automatic diagnosis system. The exemplars are generated via an adversarial autoencoder. We illustrate the behavior of the system on representative examples.
2021
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-6654-2744-9
Image classification
Explainable AI
Machine Learning
Skin lesion image classification
File in questo prodotto:
File Dimensione Formato  
prod_464865-doc_182825.pdf

solo utenti autorizzati

Descrizione: Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_464865-doc_199625.pdf

accesso aperto

Descrizione: Preprint - Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact