O-mode reflectometry, a technique to diagnose fusion plasmas, is foreseen as a source of real-time (RT) plasma position and shape measurements for control purposes in the coming generation of machines such as DEMO. It is, thus, of paramount importance to predict the behavior and capabilities of these new reflectometry systems using synthetic diagnostics. Finite-difference time-domain (FDTD) time-dependent codes allow for a comprehensive description of reflectometry but are computationally demanding, especially when it comes to three-dimensional (3D) simulations, which requires access to High Performance Computing (HPC) facilities, making the use of two-dimensional (2D) codes much more common. It is important to understand the compromises made when using a 2D model in order to decide if it is applicable or if a 3D approach is required. This work attempts to answer this question by comparing simulations of a potential plasma position reflectometer (PPR) at the Low Field-Side (LFS) on the Italian Divertor Tokamak Test facility (IDTT) carried out using two full-wave FDTD codes, REFMULF (2D) and REFMUL3 (3D). In particular, the simulations consider one of IDTT's foreseen plasma scenarios, namely, a Single Null (SN) configuration, at the Start Of Flat-top (SOF) of the plasma current.

Benchmarking 2D against 3D FDTD codes for the assessment of the measurement performance of a low field side plasma position reflectometer applicable to IDTT

De Masi G;
2022

Abstract

O-mode reflectometry, a technique to diagnose fusion plasmas, is foreseen as a source of real-time (RT) plasma position and shape measurements for control purposes in the coming generation of machines such as DEMO. It is, thus, of paramount importance to predict the behavior and capabilities of these new reflectometry systems using synthetic diagnostics. Finite-difference time-domain (FDTD) time-dependent codes allow for a comprehensive description of reflectometry but are computationally demanding, especially when it comes to three-dimensional (3D) simulations, which requires access to High Performance Computing (HPC) facilities, making the use of two-dimensional (2D) codes much more common. It is important to understand the compromises made when using a 2D model in order to decide if it is applicable or if a 3D approach is required. This work attempts to answer this question by comparing simulations of a potential plasma position reflectometer (PPR) at the Low Field-Side (LFS) on the Italian Divertor Tokamak Test facility (IDTT) carried out using two full-wave FDTD codes, REFMULF (2D) and REFMUL3 (3D). In particular, the simulations consider one of IDTT's foreseen plasma scenarios, namely, a Single Null (SN) configuration, at the Start Of Flat-top (SOF) of the plasma current.
2022
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Nuclear instruments and methods for hot plasma diagnostics
Simulation methods and programs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact