The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specifically Chlorophyll and Nitrogen content at the canopy level (CCC and CNC), starting from hyperspectral images acquired during the CHIME-RCS project, exploiting a self-supervised learning (SSL) technique. SSL is a machine learning paradigm that leverages unlabeled data to generate valuable representations for downstream tasks, bridging the gap between unsupervised and supervised learning. The proposed method comprises pre-training and fine-tuning procedures: in the first stage, a de-noising Convolutional Autoencoder is trained using pairs of noisy and clean CHIME-like images; the pre-trained Encoder network is utilized as-is or fine-tuned in the second stage. The paper demonstrates the applicability of this technique in hybrid approach methods that combine Radiative Transfer Modelling (RTM) and Machine Learning Regression Algorithm (MLRA) to set up a retrieval schema able to estimate crop traits from new generation space-born hyperspectral data. The results showcase excellent prediction accuracy for estimating CCC (R2 = 0.8318; RMSE = 0.2490) and CNC (R2 = 0.9186; RMSE = 0.7908) for maize crops from CHIME-like images without requiring further ground data calibration.

Self-Supervised Convolutional Neural Network Learning in a Hybrid Approach Framework to Estimate Chlorophyll and Nitrogen Content of Maize from Hyperspectral Images

Boschetti Mirco;Candiani Gabriele
2023

Abstract

The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specifically Chlorophyll and Nitrogen content at the canopy level (CCC and CNC), starting from hyperspectral images acquired during the CHIME-RCS project, exploiting a self-supervised learning (SSL) technique. SSL is a machine learning paradigm that leverages unlabeled data to generate valuable representations for downstream tasks, bridging the gap between unsupervised and supervised learning. The proposed method comprises pre-training and fine-tuning procedures: in the first stage, a de-noising Convolutional Autoencoder is trained using pairs of noisy and clean CHIME-like images; the pre-trained Encoder network is utilized as-is or fine-tuned in the second stage. The paper demonstrates the applicability of this technique in hybrid approach methods that combine Radiative Transfer Modelling (RTM) and Machine Learning Regression Algorithm (MLRA) to set up a retrieval schema able to estimate crop traits from new generation space-born hyperspectral data. The results showcase excellent prediction accuracy for estimating CCC (R2 = 0.8318; RMSE = 0.2490) and CNC (R2 = 0.9186; RMSE = 0.7908) for maize crops from CHIME-like images without requiring further ground data calibration.
2023
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
convolutional neural network
deep learning
hybrid approach
hyper-spectral images
self-supervised learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/439705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact