Muscle stem cells (MuSCs) are responsible for skeletal muscle homeostasis and repair. In response to extracellular cues, MuSCs activate from quiescence, expand, differentiate into mature myofibers, and self-renew within their regenerative niche. These steps are accomplished by the dynamic action of different chromatin-modifying enzymes that, cooperating with myogenic transcription factors, coordinately regulate defined transcriptional programs. Here, we review the current knowledge on the epigenetic dynamics that allow MuSCs' fate decisions. We describe the emerging mechanisms showing how chromatin topology impacts the 3D genome architecture of MuSCs during myogenesis. Because these processes contribute to shape and maintain cell identity, we highlight how defects in proper epigenetic control of MuSCs' fate decisions underlie the pathogenesis of muscle diseases, causing the acquisition of derailed cell fates and the incapacity to properly self-renew.

Epigenetic control of muscle stem cells: time for a new dimension

Bianconi V;Mozzetta C
2022

Abstract

Muscle stem cells (MuSCs) are responsible for skeletal muscle homeostasis and repair. In response to extracellular cues, MuSCs activate from quiescence, expand, differentiate into mature myofibers, and self-renew within their regenerative niche. These steps are accomplished by the dynamic action of different chromatin-modifying enzymes that, cooperating with myogenic transcription factors, coordinately regulate defined transcriptional programs. Here, we review the current knowledge on the epigenetic dynamics that allow MuSCs' fate decisions. We describe the emerging mechanisms showing how chromatin topology impacts the 3D genome architecture of MuSCs during myogenesis. Because these processes contribute to shape and maintain cell identity, we highlight how defects in proper epigenetic control of MuSCs' fate decisions underlie the pathogenesis of muscle diseases, causing the acquisition of derailed cell fates and the incapacity to properly self-renew.
2022
cell fate; chromatin; epigenetics; muscle stem cells; nuclear structure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact