The aim of this work was to investigate the stability of the bracket – adhesive – enamel interface, as a function of adhesive material and of debonding procedure, in order to assess which debonding technique is the least detrimental to the enamel. Ninety lower adult bovine incisors were selected and metallic orthodontic brackets were bonded using three adhesive systems: Concise, Transbond, and Fuji Ortho. Three different debonding procedures were used based on tensile, shear, and torsional stresses. One-way analysis of variance statistical analysis was employed to compare mechanical properties, while the adhesive remnant index was used to evaluate fracture properties. Each adhesive material used showed a statistical difference in tensile failure. The difference between shear and torsion failure loads was statistically signifi cant only for the Fuji GC sample ( P < 0.01). The shear test was the most damaging to the enamel surface. Transbond luting resulted in greater adhesion than the Concise or Fuji Ortho systems. Fuji Ortho was more prone to accidental debonding, while Transbond tended to cause enamel lesions, since high loads were required to debond the bracket. Of the three modes examined, torsional debonding stress resulted in the least enamel damage.

Evaluation of the debonding strength of orthodontic brackets

R De Santis;L Ambrosio;
2007

Abstract

The aim of this work was to investigate the stability of the bracket – adhesive – enamel interface, as a function of adhesive material and of debonding procedure, in order to assess which debonding technique is the least detrimental to the enamel. Ninety lower adult bovine incisors were selected and metallic orthodontic brackets were bonded using three adhesive systems: Concise, Transbond, and Fuji Ortho. Three different debonding procedures were used based on tensile, shear, and torsional stresses. One-way analysis of variance statistical analysis was employed to compare mechanical properties, while the adhesive remnant index was used to evaluate fracture properties. Each adhesive material used showed a statistical difference in tensile failure. The difference between shear and torsion failure loads was statistically signifi cant only for the Fuji GC sample ( P < 0.01). The shear test was the most damaging to the enamel surface. Transbond luting resulted in greater adhesion than the Concise or Fuji Ortho systems. Fuji Ortho was more prone to accidental debonding, while Transbond tended to cause enamel lesions, since high loads were required to debond the bracket. Of the three modes examined, torsional debonding stress resulted in the least enamel damage.
2007
MATERIALI COMPOSITI E BIOMEDICI
enamel
bracket
interface strength
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact