Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradient length, with an experimental scaling for the pinch number being - Rv(pinch)/chi(phi) = 1.2R/L-n + 1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend either on R/L-n, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/L-n, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement with experiments, but the experimental values are larger than the simulated ones, in particular in L-mode plasmas. The extrapolation of these results to ITER illustrates that at large enough R/L-n > 2 the pinch number becomes large enough (>3-4) to make the rotation profile peaked, provided that the edge rotation is non-zero. And this rotation peaking can be achieved with small or even with no core torque source. The absolute value of the core rotation is still very challenging to predict partly due to the lack of the present knowledge of the rotation at the plasma edge, partly due to insufficient understanding of 3D effects like braking and partly due to the uncertainties in the extrapolation of the present momentum transport results to a larger device.

Parametric dependences of momentum pinch and Prandtl number in JET

Mantica P;
2011

Abstract

Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradient length, with an experimental scaling for the pinch number being - Rv(pinch)/chi(phi) = 1.2R/L-n + 1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend either on R/L-n, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/L-n, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement with experiments, but the experimental values are larger than the simulated ones, in particular in L-mode plasmas. The extrapolation of these results to ITER illustrates that at large enough R/L-n > 2 the pinch number becomes large enough (>3-4) to make the rotation profile peaked, provided that the edge rotation is non-zero. And this rotation peaking can be achieved with small or even with no core torque source. The absolute value of the core rotation is still very challenging to predict partly due to the lack of the present knowledge of the rotation at the plasma edge, partly due to insufficient understanding of 3D effects like braking and partly due to the uncertainties in the extrapolation of the present momentum transport results to a larger device.
2011
Istituto di fisica del plasma - IFP - Sede Milano
____
File in questo prodotto:
File Dimensione Formato  
prod_23405-doc_50103.pdf

solo utenti autorizzati

Descrizione: Nuclear_Fusion_12_123002
Tipologia: Versione Editoriale (PDF)
Dimensione 866.27 kB
Formato Adobe PDF
866.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/44047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 36
social impact