Organic coatings are extensively investigated as possible solution to prevent or at least retard the occurring of corrosion processes on metal surfaces. Their actual breakthrough is still hampered by the risk of barrier properties loss because of local failure of the coating integrity. To address this issue, self-healing coatings, which are intrinsically able to recover from damages upon exposure to external stimuli, are currently gaining increasing attention. Herein, waterborne polyurethanes (PU) are synthesized, and a Diels-Alder adduct is added into the polymeric backbone to endow the material with self-healing functionality. The effect of different diisocyanate in PU synthesis is explored, namely isophorone diisocyanate, 4,4 '-dicyclohexylmethane diisocyanate (HMDI), and hexamethylene diisocyanate. The obtained results highlight the key role of the interactions among soft and hard segments in ultimately defining the coating performances. Actually, the combination of Fourier transform infrared spectroscopy, atomic force microscopy and X-ray diffration analysis reveals that the HMDI-based PU have showed the best balance in terms of H-bonding strength among hard segments and crystallinity degree in the soft ones. This allows to reach a good compromise in terms of mechanical resistance, anticorrosion properties, and self-healing ability.

Role of Diisocyanate Structure on Self-Healing and Anticorrosion Properties of Waterborne Polyurethane Coatings

Lavorgna Marino
Ultimo
Conceptualization
2021

Abstract

Organic coatings are extensively investigated as possible solution to prevent or at least retard the occurring of corrosion processes on metal surfaces. Their actual breakthrough is still hampered by the risk of barrier properties loss because of local failure of the coating integrity. To address this issue, self-healing coatings, which are intrinsically able to recover from damages upon exposure to external stimuli, are currently gaining increasing attention. Herein, waterborne polyurethanes (PU) are synthesized, and a Diels-Alder adduct is added into the polymeric backbone to endow the material with self-healing functionality. The effect of different diisocyanate in PU synthesis is explored, namely isophorone diisocyanate, 4,4 '-dicyclohexylmethane diisocyanate (HMDI), and hexamethylene diisocyanate. The obtained results highlight the key role of the interactions among soft and hard segments in ultimately defining the coating performances. Actually, the combination of Fourier transform infrared spectroscopy, atomic force microscopy and X-ray diffration analysis reveals that the HMDI-based PU have showed the best balance in terms of H-bonding strength among hard segments and crystallinity degree in the soft ones. This allows to reach a good compromise in terms of mechanical resistance, anticorrosion properties, and self-healing ability.
2021
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
coatings
corrosion protection
Diels–
Alder
polyurethane
self‐
healing properties
File in questo prodotto:
File Dimensione Formato  
311_AdvMatInter2021_OPENACCESS.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 64
social impact