New organic-inorganic polyurethane-based hybrids with enhanced mechanical properties and thermal insulation properties are reported. Polyurethane-based hybrids are characterized by the intimate interactions of their inorganic and organic co-networks and prepared by sol-gel approach, have exhibited properties exceeding those of polyurethane foams, e.g. enhanced thermal stability, durability and thermal insulating effectiveness. However, mechanical properties have previously been poor. Here, new porous organic-inorganic materials consisting of a polyurethane network modified by in-situ formation of aerogel-like polysiloxane domains, were developed. They exhibit a multiscale-porosity which enhances the insulation, mechanical and thermal properties. The synthesis was performed through a novel stepwise process consisting of: preparation of a siloxane precursor based on methyl-triethoxysilane and tetraethoxysilane; functionalization of traditional polyol for polyurethane foams with 3-(triethoxysilanepropyl)isocyanate as coupling agent; use of suitable catalysts and silicone surfactants; and foaming with methylene-di-isocyanate compound. The siloxane precursors and coupling agent led to formation of "aerogel-like" polysiloxane domains within the walls and struts of the polyurethane foams. The synthesis method enabled increased incorporation of the "aerogel-like" polysiloxane structures into the foams, compared to literature, with 20 wt% SiO2, reducing thermal conductivity of the hybrid foams 30% compared with pristine polyurethane, in addition to significant improvement in thermal stability and mechanical properties.

"Aerogel-like" polysiloxane-polyurethane hybrid foams with enhanced mechanical and thermal-insulating properties

Verdolotti Letizia;Oliviero Maria;Lavorgna Marino;Santillo Chiara;Iannace Salvatore;
2021

Abstract

New organic-inorganic polyurethane-based hybrids with enhanced mechanical properties and thermal insulation properties are reported. Polyurethane-based hybrids are characterized by the intimate interactions of their inorganic and organic co-networks and prepared by sol-gel approach, have exhibited properties exceeding those of polyurethane foams, e.g. enhanced thermal stability, durability and thermal insulating effectiveness. However, mechanical properties have previously been poor. Here, new porous organic-inorganic materials consisting of a polyurethane network modified by in-situ formation of aerogel-like polysiloxane domains, were developed. They exhibit a multiscale-porosity which enhances the insulation, mechanical and thermal properties. The synthesis was performed through a novel stepwise process consisting of: preparation of a siloxane precursor based on methyl-triethoxysilane and tetraethoxysilane; functionalization of traditional polyol for polyurethane foams with 3-(triethoxysilanepropyl)isocyanate as coupling agent; use of suitable catalysts and silicone surfactants; and foaming with methylene-di-isocyanate compound. The siloxane precursors and coupling agent led to formation of "aerogel-like" polysiloxane domains within the walls and struts of the polyurethane foams. The synthesis method enabled increased incorporation of the "aerogel-like" polysiloxane structures into the foams, compared to literature, with 20 wt% SiO2, reducing thermal conductivity of the hybrid foams 30% compared with pristine polyurethane, in addition to significant improvement in thermal stability and mechanical properties.
2021
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Hybrid
Polyurethane foam
Aerogel
Compressive strength
Thermal conductivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact