Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 degrees C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 mu g kg(-1) for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.

An Analytical Method for the Biomonitoring of Mercury in Bees and Beehive Products by Cold Vapor Atomic Fluorescence Spectrometry

Ristorini Martina;
2021

Abstract

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 degrees C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 mu g kg(-1) for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.
2021
bees
beehive products
biomonitoring
cold vapor atomic fluorescence spectrometry
sample preparation
toxic metal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact