Due to their structural flexibility, tunability and easy processing, molecular ferroelectric materials have emerged to complement the well-known ferroelectric perovskite oxides. A number of compounds have been investigated but, with the exception of polymeric polyvinylidene fluoride, most have not succeeded in achieving their potential, mainly because of their poor ambient stability. It is only recently, with the surge of electronic type ferroelectricity, that molecular ferroelectrics with superior properties have been synthesized, making them competitive with respect to oxides. Nevertheless, the uniaxial nature of most of the compounds still represents the main bottleneck because it limits the transposition of the bulk properties into films. A possible solution is represented by the use of multiaxial molecular compounds or of low-dimensional systems. In this review, we highlight the main achievements in this field and summarize the open questions to be addressed if molecular ferroelectrics are to be exploited in devices.

Recent advances in molecular ferroelectrics

Bergenti Ilaria
2022

Abstract

Due to their structural flexibility, tunability and easy processing, molecular ferroelectric materials have emerged to complement the well-known ferroelectric perovskite oxides. A number of compounds have been investigated but, with the exception of polymeric polyvinylidene fluoride, most have not succeeded in achieving their potential, mainly because of their poor ambient stability. It is only recently, with the surge of electronic type ferroelectricity, that molecular ferroelectrics with superior properties have been synthesized, making them competitive with respect to oxides. Nevertheless, the uniaxial nature of most of the compounds still represents the main bottleneck because it limits the transposition of the bulk properties into films. A possible solution is represented by the use of multiaxial molecular compounds or of low-dimensional systems. In this review, we highlight the main achievements in this field and summarize the open questions to be addressed if molecular ferroelectrics are to be exploited in devices.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN - Sede Secondaroa Bologna
molecular
ferroelectrics
thin films
File in questo prodotto:
File Dimensione Formato  
2022_JPhysD_55_033001.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/440980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact