The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rational-ized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the TOPOND module (previously limited to work in terms of s-, p-and d-type basis functions only) of the CRYSTAL program to f-and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, CsUOCl, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.

Topology of the electron density and of its laplacian from periodic lcao calculations on f-electron materials: The case of cesium uranyl chloride

Gatti C;
2021

Abstract

The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rational-ized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the TOPOND module (previously limited to work in terms of s-, p-and d-type basis functions only) of the CRYSTAL program to f-and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, CsUOCl, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.
2021
Electron density
Topology
f-electron crystals
Actinides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact