We investigated the role of the gold nanoparticles functionalized with polyvinylpyrrolidone (PVP-AuNPs) on the innate immune response against an acute infection caused by Vibrio anguillarum in an in vitro immunological nonmammalian next-generation model, the sea urchin Paracentrotus lividus. To profile the immunomodulatory function of PVP-AuNPs (0.1 ?g mL) in sea urchin immune cells stimulated by Vibrio (10 ?g mL) for 3 h, we focused on the baseline immunological state of the donor, and we analysed the topography, cellular metabolism, and expression of human cell surface antigens of the exposed cells, as well as the signalling leading the interaction between PVP-AuNPs and the Vibrio-stimulated cells. PVP-AuNPs are not able to silence the inflammatory signalling (TLR4/p38MAPK/NF-?B signalling) that involves the whole population of P. lividus immune cells exposed to Vibrio. However, our findings emphasise the ability of PVP-AuNPs to stimulate a subset of rare cells (defined here as Group 3) that express CD45 and CD14 antigens on their surface, which are known to be involved in immune cell maturation and macrophage activation in humans. Our evidence on how PVP-AuNPs may stimulate sea urchin immune cells represents an important starting point for planning new research work on the topic.

Immunomodulatory function of polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles in vibrio-stimulated sea urchin immune cells

Alijagic A;Bonura A;Pinsino A
2021

Abstract

We investigated the role of the gold nanoparticles functionalized with polyvinylpyrrolidone (PVP-AuNPs) on the innate immune response against an acute infection caused by Vibrio anguillarum in an in vitro immunological nonmammalian next-generation model, the sea urchin Paracentrotus lividus. To profile the immunomodulatory function of PVP-AuNPs (0.1 ?g mL) in sea urchin immune cells stimulated by Vibrio (10 ?g mL) for 3 h, we focused on the baseline immunological state of the donor, and we analysed the topography, cellular metabolism, and expression of human cell surface antigens of the exposed cells, as well as the signalling leading the interaction between PVP-AuNPs and the Vibrio-stimulated cells. PVP-AuNPs are not able to silence the inflammatory signalling (TLR4/p38MAPK/NF-?B signalling) that involves the whole population of P. lividus immune cells exposed to Vibrio. However, our findings emphasise the ability of PVP-AuNPs to stimulate a subset of rare cells (defined here as Group 3) that express CD45 and CD14 antigens on their surface, which are known to be involved in immune cell maturation and macrophage activation in humans. Our evidence on how PVP-AuNPs may stimulate sea urchin immune cells represents an important starting point for planning new research work on the topic.
2021
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
sea urchin; immunity; nano safety; bacterial infection
File in questo prodotto:
File Dimensione Formato  
Alijagic et al 2021 nanomaterials-11-02646-v2.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact