We consider two-dimensional zero-temperature systems of N particles to which we associate an energy of the form E[V](X):=?1?iR2E[V](X)?NE¯sq[V]+O(N12).Moreover E¯ [V] is also re-expressed as the minimizer of a four point energy. In particular, this happens if the potential V is such that V(r) = + ? forr< 1 , V(r) = - 1 for r?[1,2], V(r) = 0 if r>2, in which case E¯ [V] = - 4. To the best of our knowledge, this is the first proof of crystallization to the square lattice for a two-body interaction energy.

Crystallization to the Square Lattice for a Two-Body Potential

De Luca L;
2021

Abstract

We consider two-dimensional zero-temperature systems of N particles to which we associate an energy of the form E[V](X):=?1?iR2E[V](X)?NE¯sq[V]+O(N12).Moreover E¯ [V] is also re-expressed as the minimizer of a four point energy. In particular, this happens if the potential V is such that V(r) = + ? forr< 1 , V(r) = - 1 for r?[1,2], V(r) = 0 if r>2, in which case E¯ [V] = - 4. To the best of our knowledge, this is the first proof of crystallization to the square lattice for a two-body interaction energy.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
crystallization
File in questo prodotto:
File Dimensione Formato  
BeDePe_final_revised.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 690.25 kB
Formato Adobe PDF
690.25 kB Adobe PDF Visualizza/Apri
Betermin-De-Luca-Petrache-ARMA-rivista.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact