We consider two-dimensional zero-temperature systems of N particles to which we associate an energy of the form E[V](X):=?1?iR2E[V](X)?NE¯sq[V]+O(N12).Moreover E¯ [V] is also re-expressed as the minimizer of a four point energy. In particular, this happens if the potential V is such that V(r) = + ? forr< 1 , V(r) = - 1 for r?[1,2], V(r) = 0 if r>2, in which case E¯ [V] = - 4. To the best of our knowledge, this is the first proof of crystallization to the square lattice for a two-body interaction energy.
Crystallization to the Square Lattice for a Two-Body Potential
De Luca L;
2021
Abstract
We consider two-dimensional zero-temperature systems of N particles to which we associate an energy of the form E[V](X):=?1?iR2E[V](X)?NE¯sq[V]+O(N12).Moreover E¯ [V] is also re-expressed as the minimizer of a four point energy. In particular, this happens if the potential V is such that V(r) = + ? forr< 1 , V(r) = - 1 for r?[1,2], V(r) = 0 if r>2, in which case E¯ [V] = - 4. To the best of our knowledge, this is the first proof of crystallization to the square lattice for a two-body interaction energy.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
BeDePe_final_revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
690.25 kB
Formato
Adobe PDF
|
690.25 kB | Adobe PDF | Visualizza/Apri |
|
Betermin-De-Luca-Petrache-ARMA-rivista.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


