We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.
Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows
De Luca L;
2021
Abstract
We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.File | Dimensione | Formato | |
---|---|---|---|
CeDeNoPo_revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
396.18 kB
Formato
Adobe PDF
|
396.18 kB | Adobe PDF | Visualizza/Apri |
Cesaroni-De-Luca-Novaga-Ponsiglione-CPDE-rivista.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.