We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.

Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows

De Luca L;
2021

Abstract

We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Fractional mean curvature flow; fractional perimeter; level set formulation; local and nonlocal geometric evolutions; Minkowski content; Riesz energy; viscosity solutions
File in questo prodotto:
File Dimensione Formato  
CeDeNoPo_revised.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 396.18 kB
Formato Adobe PDF
396.18 kB Adobe PDF Visualizza/Apri
Cesaroni-De-Luca-Novaga-Ponsiglione-CPDE-rivista.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact