Effects induced by the choice of the numerical base conditions for evaluating the local seismic response are investigated in this technical note aiming to provide guidelines for professional applications. Numerical modelling of the seismic site response is presented assuming one-dimensional scheme. At first, with reference to the case of a homogeneous soil layer overlying a half-space, two different types of numerical base conditions, named rigid and elastic, were adopted to analyse the seismic site response. Then, geological setting, physical and mechanical properties were selected from Italian case studies. In detail, the following stratigraphic succession was considered: shallow layer 1 (shear wave velocity, VS, equal to 400 m/s), layer 2 (VS equal to 600 m/s) and layer 3 (VS equal to 800 m/s). In addition, real signals were retrieved from the web site of the Italian accelerometric strong motion network. Rigid and elastic base conditions were adopted to estimate the ground motion modifications of the reference signals. The results are presented in terms of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and are compared between the adopted numerical models.

Effect of base conditions in one-dimensional numerical simulation of seismic site response. A technical note for best practice

Gaetano Falcone;Federico Mori;Amerigo Mendicelli;Gianluca Acunzo;Edoardo Peronace;Massimiliano Moscatelli
2021

Abstract

Effects induced by the choice of the numerical base conditions for evaluating the local seismic response are investigated in this technical note aiming to provide guidelines for professional applications. Numerical modelling of the seismic site response is presented assuming one-dimensional scheme. At first, with reference to the case of a homogeneous soil layer overlying a half-space, two different types of numerical base conditions, named rigid and elastic, were adopted to analyse the seismic site response. Then, geological setting, physical and mechanical properties were selected from Italian case studies. In detail, the following stratigraphic succession was considered: shallow layer 1 (shear wave velocity, VS, equal to 400 m/s), layer 2 (VS equal to 600 m/s) and layer 3 (VS equal to 800 m/s). In addition, real signals were retrieved from the web site of the Italian accelerometric strong motion network. Rigid and elastic base conditions were adopted to estimate the ground motion modifications of the reference signals. The results are presented in terms of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and are compared between the adopted numerical models.
2021
Istituto di Geologia Ambientale e Geoingegneria - IGAG
numerical seismic base
numerical input motion
amplification factors
site effects
earthquake engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact