The production of enantiopure materials and molecules is of uttermost relevance in research and industry in numerous contexts, ranging from nonlinear optics to asymmetric synthesis. In the context of the latter, dehalogenation, which is an essential reaction step for a broad class of chemical reactions, is investigated; specifically, dehalogenation of prochiral 5-bromo-7-methylbenz(a)anthracene (BMA) on prototypical, chiral, intermetallic PdGa{111} surfaces under ultrahigh vacuum conditions. Asymmetric halogen elimination is demonstrated by combining temperature-programmed X-ray photoelectron spectroscopy, scanning probe microscopy, and density functional theory. On the PdGa{111} surfaces, the difference in debromination temperatures for the two BMA surface enantiomers amounts up to an unprecedented 46 K. The significant dependence of the dehalogenation temperature of the BMA surface enantiomers on the atomic termination of the PdGa{111} surfaces implies that the ensemble effect is pronounced in this reaction step. These findings evidence enantiospecific control and hence promote intrinsically chiral crystals for asymmetric on-surface synthesis.

Asymmetric Elimination Reaction on Chiral Metal Surfaces

Di Giovannantonio Marco;
2022

Abstract

The production of enantiopure materials and molecules is of uttermost relevance in research and industry in numerous contexts, ranging from nonlinear optics to asymmetric synthesis. In the context of the latter, dehalogenation, which is an essential reaction step for a broad class of chemical reactions, is investigated; specifically, dehalogenation of prochiral 5-bromo-7-methylbenz(a)anthracene (BMA) on prototypical, chiral, intermetallic PdGa{111} surfaces under ultrahigh vacuum conditions. Asymmetric halogen elimination is demonstrated by combining temperature-programmed X-ray photoelectron spectroscopy, scanning probe microscopy, and density functional theory. On the PdGa{111} surfaces, the difference in debromination temperatures for the two BMA surface enantiomers amounts up to an unprecedented 46 K. The significant dependence of the dehalogenation temperature of the BMA surface enantiomers on the atomic termination of the PdGa{111} surfaces implies that the ensemble effect is pronounced in this reaction step. These findings evidence enantiospecific control and hence promote intrinsically chiral crystals for asymmetric on-surface synthesis.
2022
chiral compounds
TP-XPS
stm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact