The properties of pulse laser ablation of Cu and Cu98/Be2 materials are studied, and the differences in the emission of Cu ions are emphasized. The iodine high-power laser system PALS in Prague and a KrF laser were used to perform the experiments at the fundamental harmonics 0 = 1.315m and 0 = 248nm delivering energy up to 500J and 600mJ, respectively. Pure Cu and Cu98/Be2 alloy targets of 50, 500 and 1000m thickness were ablated to measure the influence of the Be admixture on the emission of Cu ions. The alloy Cu98/Be2 was chosen due to the well-defined amount of a beryllium admixture in the plasma in contrast to the incidental amount of carbon, oxygen and hydrogen impurities chemisorbed on target surfaces. It was approved that the emission of Cu ions driven by the KrF laser exhibits a higher gain from the Cu98/Be2 plasma in contrast to the Cu plasma. The ion emission induced by laser intensities near the threshold of fast ion generation is significantly affected by the emission of ionized impurities chemisorbed on a target surface and by repetitive outbursts of fast ions if generated. Under these conditions, the influence of the 2% Be admixture on the emission of Cu ions plays only a minor role.

Ion emission from laser ablation of Cu and Cu98/Be2 alloy targets

Velardi L;
2010

Abstract

The properties of pulse laser ablation of Cu and Cu98/Be2 materials are studied, and the differences in the emission of Cu ions are emphasized. The iodine high-power laser system PALS in Prague and a KrF laser were used to perform the experiments at the fundamental harmonics 0 = 1.315m and 0 = 248nm delivering energy up to 500J and 600mJ, respectively. Pure Cu and Cu98/Be2 alloy targets of 50, 500 and 1000m thickness were ablated to measure the influence of the Be admixture on the emission of Cu ions. The alloy Cu98/Be2 was chosen due to the well-defined amount of a beryllium admixture in the plasma in contrast to the incidental amount of carbon, oxygen and hydrogen impurities chemisorbed on target surfaces. It was approved that the emission of Cu ions driven by the KrF laser exhibits a higher gain from the Cu98/Be2 plasma in contrast to the Cu plasma. The ion emission induced by laser intensities near the threshold of fast ion generation is significantly affected by the emission of ionized impurities chemisorbed on a target surface and by repetitive outbursts of fast ions if generated. Under these conditions, the influence of the 2% Be admixture on the emission of Cu ions plays only a minor role.
2010
laser-produced Cu98
Be2 plasma
enhanced laser ion emission
ion outbursts
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact