We report the details of a technique for the production of proton beams with very low energy spread exploiting the short soft X-rays obtained by laser ablation. These beams have been generated by the dissociation and ionization of an hydrogen buffer gas induced by the laser-plasma X-rays and then accelerated by means of an electrostatic accelerator. Their properties have been analyzed through the time-of-flight method applying different accelerating voltages. The resulting energetic spread ranges between 6 and 11%, as a function of the applied voltage. Such a system could be extremely useful for producing quasi-monoenergetic proton beams.

Quasi-monoenergetic proton beams by laser-plasma X-rays

Velardi L
2014

Abstract

We report the details of a technique for the production of proton beams with very low energy spread exploiting the short soft X-rays obtained by laser ablation. These beams have been generated by the dissociation and ionization of an hydrogen buffer gas induced by the laser-plasma X-rays and then accelerated by means of an electrostatic accelerator. Their properties have been analyzed through the time-of-flight method applying different accelerating voltages. The resulting energetic spread ranges between 6 and 11%, as a function of the applied voltage. Such a system could be extremely useful for producing quasi-monoenergetic proton beams.
2014
proton beams
laser plasma
UV laser ablation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact