In this work, we report the manufacturing and experimental analysis of low-cost and eco-friendly paper-based gas sensors for food smart packaging. The hygroscopic properties of paper help detecting the presence of water-soluble gases in an environment provided with relative humidity (RH) above a given threshold (RH > 75%) and discovering the presence of gaseous-markers of the food-spoilage process, like ammonia. Carbon interdigitated electrodes were printed by Aerosol Jet Printing and sintered by Flash Lamp Annealing on chromatographic paper, obtaining a mean resistance value of (231 +/- 20) kOhm; and (249 +/- 28) kOhm; for the left and the right electrode, respectively. After being tested at different RH values (75, 80, 90, 100%), and once stabilized, they were tested with different ammonia concentrations (3, 6, 9, and 12 ppm). A proportional resistance decrease was evidenced in increasing ammonia concentration. Considering the baseline at a constant value of RH=75%, the sensors showed a resistance variation of 12% in presence of the lowest concentration of 3 ppm. Three different temperatures were considered during the tests, 5 degC, 15 degC, and 25 degC, evidencing no primary influence of this parameter. Ethanol and acetone were investigated as representatives of interfering compounds such as alcohols and ketones that may be developed during food spoilage. Good selectivity was observed both by studying these compounds individually and together with ammonia. Experimental results showed that 48 ppm of acetone induced a resistance change lower than 3 ppm of ammonia, while 240 ppm of ethanol induced a resistance change comparable to 12 ppm of ammonia.

Aerosol Jet Printed and Photonic Cured Paper-based Ammonia Sensor for Food Smart Packaging

Ponzoni Andrea;
2022

Abstract

In this work, we report the manufacturing and experimental analysis of low-cost and eco-friendly paper-based gas sensors for food smart packaging. The hygroscopic properties of paper help detecting the presence of water-soluble gases in an environment provided with relative humidity (RH) above a given threshold (RH > 75%) and discovering the presence of gaseous-markers of the food-spoilage process, like ammonia. Carbon interdigitated electrodes were printed by Aerosol Jet Printing and sintered by Flash Lamp Annealing on chromatographic paper, obtaining a mean resistance value of (231 +/- 20) kOhm; and (249 +/- 28) kOhm; for the left and the right electrode, respectively. After being tested at different RH values (75, 80, 90, 100%), and once stabilized, they were tested with different ammonia concentrations (3, 6, 9, and 12 ppm). A proportional resistance decrease was evidenced in increasing ammonia concentration. Considering the baseline at a constant value of RH=75%, the sensors showed a resistance variation of 12% in presence of the lowest concentration of 3 ppm. Three different temperatures were considered during the tests, 5 degC, 15 degC, and 25 degC, evidencing no primary influence of this parameter. Ethanol and acetone were investigated as representatives of interfering compounds such as alcohols and ketones that may be developed during food spoilage. Good selectivity was observed both by studying these compounds individually and together with ammonia. Experimental results showed that 48 ppm of acetone induced a resistance change lower than 3 ppm of ammonia, while 240 ppm of ethanol induced a resistance change comparable to 12 ppm of ammonia.
2022
Istituto Nazionale di Ottica - INO
aerosol jet printing
Ammonia
ammonia detection
Compounds
Electrodes
flash lamp annealing
Ink
Ions
paper-based gas sensors
Printing
smart packaging
Temperature measurement
File in questo prodotto:
File Dimensione Formato  
prod_466506-doc_184027.pdf

solo utenti autorizzati

Descrizione: Aerosol Jet Printed and Photonic Cured Paper-based Ammonia Sensor for Food Smart Packaging
Tipologia: Versione Editoriale (PDF)
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact