Understanding the mutual influence between magnetic and topological properties in a solid system is a fundamental challenge for quantum materials research. The so-called axion insulator is one such case, with exotic properties related to the magnetoelectric effect. In this work, by combining chemical and magnetic-state sensitive electron and X-ray spectroscopies with first-principle calculations we reveal that EuSn2P2 holds the characteristics of an axion insulator and displays "hidden" electronic properties arising from its layer-dependent ferromagnetic character. As a function of the termination, we observe specific electronic states, holding a spin arrangement representative of a topological insulator. Furthermore, the direction of magnetization enables topological protection, a key property related to axion-based physics.We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.

Evidence of magnetism-induced topological protection in the axion insulator candidate EuSn2P2

Pierantozzi Gian Marco;De Vita Alessandro;Bigi Chiara;Mondal Debashis;Mazzola Federico;Fujii Jun;Vobornik Ivana;Vinai Giovanni;Sala Alessandro;Africh Cristina;Rossi Giorgio;Panaccione Giancarlo
2022

Abstract

Understanding the mutual influence between magnetic and topological properties in a solid system is a fundamental challenge for quantum materials research. The so-called axion insulator is one such case, with exotic properties related to the magnetoelectric effect. In this work, by combining chemical and magnetic-state sensitive electron and X-ray spectroscopies with first-principle calculations we reveal that EuSn2P2 holds the characteristics of an axion insulator and displays "hidden" electronic properties arising from its layer-dependent ferromagnetic character. As a function of the termination, we observe specific electronic states, holding a spin arrangement representative of a topological insulator. Furthermore, the direction of magnetization enables topological protection, a key property related to axion-based physics.We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.
2022
Istituto Officina dei Materiali - IOM -
axion insulator
magnetism
spin polarization
ARPES
topological surface states
File in questo prodotto:
File Dimensione Formato  
PNAS 2022 Vol. 119 No. 4 e2116575119.full.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact