Near-field microscopy discloses a peculiar potential to explore novel quantum state of matter at the nanoscale, providing an intriguing playground to investigate, locally, carrier dynamics or propagation of photoexcited modes as plasmons, phonons, plasmon-polaritons or phonon-polaritons. Here, we exploit a combination of hyperspectral time domain spectroscopy nano-imaging and detectorless scattering near-field optical microscopy, at multiple terahertz frequencies, to explore the rich physics of layered topological insulators as Bi2Se3 and Bi2Te2.2Se0.8, hyperbolic materials with topologically protected surface states. By mapping the near-field scattering signal from a set of thin flakes of Bi2Se3 and Bi2Te2.2Se0.8 of various thicknesses, we shed light on the nature of the collective modes dominating their optical response in the 2-3 THz range. We capture snapshots of the activation of transverse and longitudinal optical phonons and reveal the propagation of sub-diffractional hyperbolic phonon-polariton modes influenced by the Dirac plasmons arising from the topological surface states and of bulk plasmons, prospecting new research directions in plasmonics, tailored nanophotonics, spintronics and quantum technologies.

Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy

Pogna E.
Primo
;
Viti L.;Brambilla M.;Scamarcio G.;Vitiello M. S.
2021

Abstract

Near-field microscopy discloses a peculiar potential to explore novel quantum state of matter at the nanoscale, providing an intriguing playground to investigate, locally, carrier dynamics or propagation of photoexcited modes as plasmons, phonons, plasmon-polaritons or phonon-polaritons. Here, we exploit a combination of hyperspectral time domain spectroscopy nano-imaging and detectorless scattering near-field optical microscopy, at multiple terahertz frequencies, to explore the rich physics of layered topological insulators as Bi2Se3 and Bi2Te2.2Se0.8, hyperbolic materials with topologically protected surface states. By mapping the near-field scattering signal from a set of thin flakes of Bi2Se3 and Bi2Te2.2Se0.8 of various thicknesses, we shed light on the nature of the collective modes dominating their optical response in the 2-3 THz range. We capture snapshots of the activation of transverse and longitudinal optical phonons and reveal the propagation of sub-diffractional hyperbolic phonon-polariton modes influenced by the Dirac plasmons arising from the topological surface states and of bulk plasmons, prospecting new research directions in plasmonics, tailored nanophotonics, spintronics and quantum technologies.
2021
Istituto Nanoscienze - NANO
Istituto di fotonica e nanotecnologie - IFN
near-field imaging
plasmon polaritons
THz spectroscopy
topological insulators
nanophotonics
File in questo prodotto:
File Dimensione Formato  
s41467-021-26831-6.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri
41467_2021_27558_MOESM1_ESM.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact