A small portion of a tissue defines a microstate in gene expression space. Mutations, epigenetic events or external factors cause microstate displacements which are modeled by combining small independent gene expression variations and large Levy jumps, resulting from the collective variations of a set of genes. The risk of cancer in a tissue is estimated as the microstate probability to transit from the normal to the tumor region in gene expression space. The formula coming from the contribution of large Levy jumps seems to provide a qualitatively correct description of the lifetime risk of cancer in 8 tissues, and reveals an interesting connection between the risk and the way the tissue is protected against infections.
A one-dimensional parameter-free model for carcinogenesis in gene expression space
2022
Abstract
A small portion of a tissue defines a microstate in gene expression space. Mutations, epigenetic events or external factors cause microstate displacements which are modeled by combining small independent gene expression variations and large Levy jumps, resulting from the collective variations of a set of genes. The risk of cancer in a tissue is estimated as the microstate probability to transit from the normal to the tumor region in gene expression space. The formula coming from the contribution of large Levy jumps seems to provide a qualitatively correct description of the lifetime risk of cancer in 8 tissues, and reveals an interesting connection between the risk and the way the tissue is protected against infections.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.