Conodont elements are calcium phosphate (apatite structure) mineralized remains of the cephalic feeding apparatus of an extinct marine organism. Due to the high affinity of apatite for rare earth elements (REE) and other high field strength elements (HFSE), conodont elements were frequently assumed to be a reliable archive of sea-water composition and changes that had occurred during diagenesis. Likewise, the crystallinity index of bioapatite, i.e., the rate of crystallinity of biologically mediated apatite, should be generally linearly dependent on diagenetic alteration as the greater (and longer) the pressure and temperature to which a crystal is exposed, the greater the resulting crystallinity. In this study, we detected the uptake of HFSE in conodont elements recovered from a single stratigraphic horizon in the Upper Ordovician of Normandy (France). Assuming therefore that all the specimens have undergone an identical diagenetic history, we have assessed whether conodont taxonomy (and morphology) impacts HFSE uptake and crystallinity index. We found that all conodont elements are characterized by a clear diagenetic signature, with minor but significant differences among taxa. These distinctions are evidenced also by the crystallinity index values which show positive correlations with some elements and, accordingly, with diagenesis; however, correlations with the crystallinity index strongly depend on the method adopted for its calculation.

Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?

Medici L;
2021

Abstract

Conodont elements are calcium phosphate (apatite structure) mineralized remains of the cephalic feeding apparatus of an extinct marine organism. Due to the high affinity of apatite for rare earth elements (REE) and other high field strength elements (HFSE), conodont elements were frequently assumed to be a reliable archive of sea-water composition and changes that had occurred during diagenesis. Likewise, the crystallinity index of bioapatite, i.e., the rate of crystallinity of biologically mediated apatite, should be generally linearly dependent on diagenetic alteration as the greater (and longer) the pressure and temperature to which a crystal is exposed, the greater the resulting crystallinity. In this study, we detected the uptake of HFSE in conodont elements recovered from a single stratigraphic horizon in the Upper Ordovician of Normandy (France). Assuming therefore that all the specimens have undergone an identical diagenetic history, we have assessed whether conodont taxonomy (and morphology) impacts HFSE uptake and crystallinity index. We found that all conodont elements are characterized by a clear diagenetic signature, with minor but significant differences among taxa. These distinctions are evidenced also by the crystallinity index values which show positive correlations with some elements and, accordingly, with diagenesis; however, correlations with the crystallinity index strongly depend on the method adopted for its calculation.
2021
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Bioapatite
crystallinity index
HFSE
laser ablation
mass spectrometry
microdiffraction
Normandy
Ordovician
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact