The inclusion of functional molecules as substitutional dopants in single crystals of organic hosts with complementary optical properties provides a versatile strategy to tune optical and magnetic properties in view of their applications in opto-electronics and spintronics. Here, by combining electron spin resonance and optical spectroscopy, isolated triplet exciton states with distinct emission and absorptive resonance modes from two magnetically inequivalent sites of pentacene within the picene crystal are detected at room temperature. This is possible due to the incorporation of a low-doping, 1% mol/mol of pentacene into the monoclinic polymorph of picene high-quality single crystals. In addition, delayed fluorescence-optically detected magnetic resonance (ODMR) studies demonstrate efficient spin-dependent optical activities that are tuned by crystallographically oriented magnetic fields. These properties are particularly appealing for the exploitation of pentacene in room-temperature spin-driven opto-electronics, quantum sensing and in microwave amplification by stimulated emission of radiation (MASER).

Room-temperature optically detected magnetic resonance of triplet excitons in a pentacene-doped picene single crystal

Ghirri Alberto;
2022

Abstract

The inclusion of functional molecules as substitutional dopants in single crystals of organic hosts with complementary optical properties provides a versatile strategy to tune optical and magnetic properties in view of their applications in opto-electronics and spintronics. Here, by combining electron spin resonance and optical spectroscopy, isolated triplet exciton states with distinct emission and absorptive resonance modes from two magnetically inequivalent sites of pentacene within the picene crystal are detected at room temperature. This is possible due to the incorporation of a low-doping, 1% mol/mol of pentacene into the monoclinic polymorph of picene high-quality single crystals. In addition, delayed fluorescence-optically detected magnetic resonance (ODMR) studies demonstrate efficient spin-dependent optical activities that are tuned by crystallographically oriented magnetic fields. These properties are particularly appealing for the exploitation of pentacene in room-temperature spin-driven opto-electronics, quantum sensing and in microwave amplification by stimulated emission of radiation (MASER).
2022
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Organic semiconductors
Pentacene
Picene
Electron spin resonan
Optically detected magnetic resonance
Delayed fluorescence
Triplet excitons
MASER
File in questo prodotto:
File Dimensione Formato  
MoroJMR22.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact