For the first time a long-term (500 h) durability study in direct methanol fuel cells (DMFCs) is carried out on a Platinum Group Metal-free (PGM-free) cathodic electro-catalyst commercially available on market. The electro-catalyst is tested for 500 h at a fixed cell voltage (0.3 V), recording the polarization curves during the operation. A drastic decrease in performance is observed after the first 100 h (from 220 to 75 mA cm); afterwards, the decrease is flatter, passing from 75 to 25 mA cm (at 500 h). The causes of this performance degradation are investigated by postmortem physicochemical analyzes, such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with X-ray energy dispersive analysis (EDX). Possible reasons of degradation are indicated to be PGM-free catalyst aggregation, carbon and nitrogen species decrease, Ruthenium dissolution and migration from the anode to the cathode, poisoning both membrane and cathode catalyst.

Investigating the durability of a direct methanol fuel cell equipped with commercial Platinum Group Metal-free cathodic electro-catalysts

Lo Vecchio C;Baglio V
2021

Abstract

For the first time a long-term (500 h) durability study in direct methanol fuel cells (DMFCs) is carried out on a Platinum Group Metal-free (PGM-free) cathodic electro-catalyst commercially available on market. The electro-catalyst is tested for 500 h at a fixed cell voltage (0.3 V), recording the polarization curves during the operation. A drastic decrease in performance is observed after the first 100 h (from 220 to 75 mA cm); afterwards, the decrease is flatter, passing from 75 to 25 mA cm (at 500 h). The causes of this performance degradation are investigated by postmortem physicochemical analyzes, such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with X-ray energy dispersive analysis (EDX). Possible reasons of degradation are indicated to be PGM-free catalyst aggregation, carbon and nitrogen species decrease, Ruthenium dissolution and migration from the anode to the cathode, poisoning both membrane and cathode catalyst.
2021
Istituto di Tecnologie Avanzate per l'Energia - ITAE
DMFC
Non-PGM catalyst
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact