The mean evolution of the Asian summer monsoon and its interannual variability have been studied using three simulations (from 1961 to 1994) with the ECHAM4 General Circulation Model (GCM). The results have been compared with observational data and with two reanalyses data sets: the ECMWF Reanalysis (ERA) and the NCEP-NCAR Reanalysis. The South Asian summer monsoon (SASM) has been studied in terms of mean precipitation and circulation patterns. The model is successful in simulating the mean circulation of the SASM, though precipitation is generally weaker than observed in India, but closer to the observed values over the Indian Ocean and the Philippines. The ECHAM4 model also shows a capability to capture the interannual variability of the monsoon as it is measured by two different indices, the EIMR (Extended Indian Monsoon Rainfall) index and the DMI (Dynamical Monsoon Index). An analysis of NINO3 SSTA anomalies and of the Asian summer monsoon indices showed that the model is able to capture rather well the interdecadal variation of the correlation between them. A large ensemble of 25 members, forced with interannually varying SST from 1979 to 1993, has been used to test the potential predictability of the Indian summer monsoon and the dependence of the skill on the ensemble size. Results indicate that a minimum ensemble size of 16 members is needed to capture the variability of the monsoon indices.
Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM
Cherchi A;
2003
Abstract
The mean evolution of the Asian summer monsoon and its interannual variability have been studied using three simulations (from 1961 to 1994) with the ECHAM4 General Circulation Model (GCM). The results have been compared with observational data and with two reanalyses data sets: the ECMWF Reanalysis (ERA) and the NCEP-NCAR Reanalysis. The South Asian summer monsoon (SASM) has been studied in terms of mean precipitation and circulation patterns. The model is successful in simulating the mean circulation of the SASM, though precipitation is generally weaker than observed in India, but closer to the observed values over the Indian Ocean and the Philippines. The ECHAM4 model also shows a capability to capture the interannual variability of the monsoon as it is measured by two different indices, the EIMR (Extended Indian Monsoon Rainfall) index and the DMI (Dynamical Monsoon Index). An analysis of NINO3 SSTA anomalies and of the Asian summer monsoon indices showed that the model is able to capture rather well the interdecadal variation of the correlation between them. A large ensemble of 25 members, forced with interannually varying SST from 1979 to 1993, has been used to test the potential predictability of the Indian summer monsoon and the dependence of the skill on the ensemble size. Results indicate that a minimum ensemble size of 16 members is needed to capture the variability of the monsoon indices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.