Ultrafast force-clamp spectroscopy (UFFCS) is a single molecule technique based on laser tweezers that allows the investigation of the chemomechanics of both conventional and unconventional myosins under load with unprecedented time resolution. In particular, the possibility to probe myosin motors under constant force right after the actin-myosin bond formation, together with the high rate of the force feedback (200 kHz), has shown UFFCS to be a valuable tool to study the load dependence of fast dynamics such as the myosin working stroke. Moreover, UFFCS enables the study of how processive and non-processive myosin-actin interactions are influenced by the intensity and direction of the applied force.
Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultrafast Force-Clamp Spectroscopy
Gardini L;
2021
Abstract
Ultrafast force-clamp spectroscopy (UFFCS) is a single molecule technique based on laser tweezers that allows the investigation of the chemomechanics of both conventional and unconventional myosins under load with unprecedented time resolution. In particular, the possibility to probe myosin motors under constant force right after the actin-myosin bond formation, together with the high rate of the force feedback (200 kHz), has shown UFFCS to be a valuable tool to study the load dependence of fast dynamics such as the myosin working stroke. Moreover, UFFCS enables the study of how processive and non-processive myosin-actin interactions are influenced by the intensity and direction of the applied force.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


