The murine Htf9-a/RanBP1 and Htf9-c genes are divergently transcribed from a bidirectional promoter. The Htf9-a gene encodes the RanBP1 protein, a major partner of the Ran GTPase. The divergently transcribed Htf9-c gene encodes a protein sharing similarity with yeast and bacterial nucleic acid-modifying enzymes. We report here that both mRNA species produced by the Htf9-associated genes are regulated during the cell cycle progression, peak in S phase and decrease during mitosis. Transient expression experiments with reporter constructs showed that cell cycle expression is controlled at the transcriptional level, because the bidirectional Htf9 promoter is downregulated in growth-arrested cells, is activated at the G(1)/S transition and reaches maximal activity in S phase, though with a different efficiency for each orientation. We have delimited specific promoter regions controlling S phase activity in one or both orientations: identified elements contain recognition sites for members belonging to both the E2F and Spl families of transcription factors. Together, the results suggest that the sharing of the regulatory region supports co-regulation of the Htf9-a/RanBP1 and Htf9-c genes in a common window of the cell cycle.

Expression of the murine RanBP1 and Htf9-c genes is regulated from a shared bidirectional promoter during cell cycle progression

Guarguaglini G;Lavia P
1997

Abstract

The murine Htf9-a/RanBP1 and Htf9-c genes are divergently transcribed from a bidirectional promoter. The Htf9-a gene encodes the RanBP1 protein, a major partner of the Ran GTPase. The divergently transcribed Htf9-c gene encodes a protein sharing similarity with yeast and bacterial nucleic acid-modifying enzymes. We report here that both mRNA species produced by the Htf9-associated genes are regulated during the cell cycle progression, peak in S phase and decrease during mitosis. Transient expression experiments with reporter constructs showed that cell cycle expression is controlled at the transcriptional level, because the bidirectional Htf9 promoter is downregulated in growth-arrested cells, is activated at the G(1)/S transition and reaches maximal activity in S phase, though with a different efficiency for each orientation. We have delimited specific promoter regions controlling S phase activity in one or both orientations: identified elements contain recognition sites for members belonging to both the E2F and Spl families of transcription factors. Together, the results suggest that the sharing of the regulatory region supports co-regulation of the Htf9-a/RanBP1 and Htf9-c genes in a common window of the cell cycle.
1997
Istituto di Biologia e Patologia Molecolari - IBPM
Cell cycle
bidirectional transcription
RANBP1 gene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 47
social impact