Holographic communication is intended as a holistic way to manipulate, with unprecedented flexibility, the electromagnetic field generated or sensed by an antenna. This is of particular interest when using large antennas at high frequency (e.g., at millimeter-wave or terahertz), whose operating condition may easily fall in the Fresnel region (radiating near-field), where the classical plane wave propagation assumption is no longer valid. This article analyzes the optimal communication involving large intelligent surfaces realized, for example, with metamaterials as possible enabling technology for holographic communication. It is shown that traditional propagation models must be revised and that, when exploiting spherical wave propagation in the near-field region, new opportunities are opened, for example, in terms of feasible orthogonal communication channels.

Holographic Communication Using Intelligent Surfaces

Decarli N
2021

Abstract

Holographic communication is intended as a holistic way to manipulate, with unprecedented flexibility, the electromagnetic field generated or sensed by an antenna. This is of particular interest when using large antennas at high frequency (e.g., at millimeter-wave or terahertz), whose operating condition may easily fall in the Fresnel region (radiating near-field), where the classical plane wave propagation assumption is no longer valid. This article analyzes the optimal communication involving large intelligent surfaces realized, for example, with metamaterials as possible enabling technology for holographic communication. It is shown that traditional propagation models must be revised and that, when exploiting spherical wave propagation in the near-field region, new opportunities are opened, for example, in terms of feasible orthogonal communication channels.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Holographic Communication
Intelligent Surfaces
MIMO
Degrees of Freedom
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 41
social impact