The main inhibitory synaptic currents, gated by gamma-aminobutyric acid (GABA), are mediated by Cl--conducting channels1-3, and are therefore sensitive to changes in the chloride electrochemical gradient. GABAergic activity dictates the neuronal firing range4,5 and timing6-9, which in turn influences the rhythms of the brain, synaptic plasticity, and flow of information in neuronal networks7,10-12. The intracellular chloride concentration [Cl-]i 13is, therefore, ideally placed to be a regulator of neuronal activity. Chloride levels13 have been thought to be stable in adult cortical networks, except when associated with pathological activation14-17. Here, we used 2-photon LSSmClopHensor imaging14, in anaesthetized young adult mice, to show a large physiological circadian fluctuation of baseline [Cl-] inside pyramidal cells, equating to a ~15mV positive shift in ECl at times when mice are typically awake (midnight), relative to when they are usually asleep (midday). The change in pyramidal [Cl-]i alters the stability of cortical networks, as demonstrated by a greater than 3-fold longer latency to seizures induced by 4-aminopyridine at midday, compared to midnight. Importantly, both [Cl-]i and latency to seizure, in night-time experiments, were shifted in line with day-time measures, by inhibition of NKCC1. The redistribution of [Cl-]i reflects circadian changes in surface expression and phosphorylation states of the cation-chloride-co-transporters, KCC2 and NKCC1, leading to a greatly reduced chloride-extrusion capacity at night (awake period). Our data show how changes in the biochemical state of neurons may be transduced into altered brain states.

Circadian rhythm in cortical chloride homeostasis underpins variation in network excitability

Olga Cozzolino;Vinoshene Pillai;Silvia Landi;Gian Michele Ratto
2021

Abstract

The main inhibitory synaptic currents, gated by gamma-aminobutyric acid (GABA), are mediated by Cl--conducting channels1-3, and are therefore sensitive to changes in the chloride electrochemical gradient. GABAergic activity dictates the neuronal firing range4,5 and timing6-9, which in turn influences the rhythms of the brain, synaptic plasticity, and flow of information in neuronal networks7,10-12. The intracellular chloride concentration [Cl-]i 13is, therefore, ideally placed to be a regulator of neuronal activity. Chloride levels13 have been thought to be stable in adult cortical networks, except when associated with pathological activation14-17. Here, we used 2-photon LSSmClopHensor imaging14, in anaesthetized young adult mice, to show a large physiological circadian fluctuation of baseline [Cl-] inside pyramidal cells, equating to a ~15mV positive shift in ECl at times when mice are typically awake (midnight), relative to when they are usually asleep (midday). The change in pyramidal [Cl-]i alters the stability of cortical networks, as demonstrated by a greater than 3-fold longer latency to seizures induced by 4-aminopyridine at midday, compared to midnight. Importantly, both [Cl-]i and latency to seizure, in night-time experiments, were shifted in line with day-time measures, by inhibition of NKCC1. The redistribution of [Cl-]i reflects circadian changes in surface expression and phosphorylation states of the cation-chloride-co-transporters, KCC2 and NKCC1, leading to a greatly reduced chloride-extrusion capacity at night (awake period). Our data show how changes in the biochemical state of neurons may be transduced into altered brain states.
2021
circadian rhythm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/442934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact