Fe2O3 and Fe2O3:Ge nanofibers (NFs) were prepared via electrospinning and thoroughly characterized via several techniques in order to investigate the effects produced by germanium incorporation in the nanostructure and crystalline phase of the oxide. The results indicate that reference Fe2O3 NFs consist of interconnected hematite grains, whereas in Fe2O3:Ge NFs, constituted by finer and elongated nanostructures developing mainly along their axis, an amorphous component coexists with the dominant ?-Fe2O3 and ?-Fe2O3 phases. Ge4+ ions, mostly dispersed as dopant impurities, are accommodated in the tetrahedral sites of the maghemite lattice and probably in the defective hematite surface sites. When tested as anode active material for sodium ion batteries, Fe2O3:Ge NFs show good specific capacity (320 mAh g-1 at 50 mA g-1) and excellent rate capability (still delivering 140 mAh g-1 at 2 A g-1). This behavior derives from the synergistic combination of the nanostructured morphology, the electronic transport properties of the complex material, and the pseudo-capacitive nature of the charge storage mechanism.
Effect of germanium incorporation on the electrochemical performance of electrospun Fe2O3 nanofibers-based anodes in sodium-ion batteries
Spadaro L;
2021
Abstract
Fe2O3 and Fe2O3:Ge nanofibers (NFs) were prepared via electrospinning and thoroughly characterized via several techniques in order to investigate the effects produced by germanium incorporation in the nanostructure and crystalline phase of the oxide. The results indicate that reference Fe2O3 NFs consist of interconnected hematite grains, whereas in Fe2O3:Ge NFs, constituted by finer and elongated nanostructures developing mainly along their axis, an amorphous component coexists with the dominant ?-Fe2O3 and ?-Fe2O3 phases. Ge4+ ions, mostly dispersed as dopant impurities, are accommodated in the tetrahedral sites of the maghemite lattice and probably in the defective hematite surface sites. When tested as anode active material for sodium ion batteries, Fe2O3:Ge NFs show good specific capacity (320 mAh g-1 at 50 mA g-1) and excellent rate capability (still delivering 140 mAh g-1 at 2 A g-1). This behavior derives from the synergistic combination of the nanostructured morphology, the electronic transport properties of the complex material, and the pseudo-capacitive nature of the charge storage mechanism.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.