In this work, plastic adsorbent heat exchangers were developed by a 3D printing technique and experimentally tested aiming at evaluating their potential for adsorption cooling applications. Various plastic materials were selected and characterized to measure the most interesting physical behaviours both before and after the printing process. Micro scale plastic flat type heat exchangers were also realized by a 3D printer, integrated with the water sorbent AQSOA FAM Z02 and experimentally tested under real operating conditions typical for adsorption cooling applications to measure the dynamic performance of the new adsorber configurations. To conclude the study, a thermodynamic analysis was carried out by the use of a mathematical model to evaluate the influence of plastic materials on the cooling Coefficient Of Performance. Results showed that both in terms of thermodynamic and dynamic performance the plastic adsorbers are competitive with metallic ones with a relevant mass reduction and the possibility to manufacture complex geometries by the 3D printing technology. In particular, under the tested operating conditions, the plastic adsorbers were able to deliver a specific cooling power of 1.88-2.40 kW per kg of dry sorbent while the metallic adsorber reached 2.34 kW/kg.

Plastic heat exchangers for adsorption cooling: Thermodynamic and dynamic performance

Sapienza A;Brancato V;Vasta S
2021

Abstract

In this work, plastic adsorbent heat exchangers were developed by a 3D printing technique and experimentally tested aiming at evaluating their potential for adsorption cooling applications. Various plastic materials were selected and characterized to measure the most interesting physical behaviours both before and after the printing process. Micro scale plastic flat type heat exchangers were also realized by a 3D printer, integrated with the water sorbent AQSOA FAM Z02 and experimentally tested under real operating conditions typical for adsorption cooling applications to measure the dynamic performance of the new adsorber configurations. To conclude the study, a thermodynamic analysis was carried out by the use of a mathematical model to evaluate the influence of plastic materials on the cooling Coefficient Of Performance. Results showed that both in terms of thermodynamic and dynamic performance the plastic adsorbers are competitive with metallic ones with a relevant mass reduction and the possibility to manufacture complex geometries by the 3D printing technology. In particular, under the tested operating conditions, the plastic adsorbers were able to deliver a specific cooling power of 1.88-2.40 kW per kg of dry sorbent while the metallic adsorber reached 2.34 kW/kg.
2021
Istituto di Tecnologie Avanzate per l'Energia - ITAE
3D printing; Adsorption cooling; Adsorption heat transformation; Cooling COP; Cost reduction; Heat-transfer; Kinetics; Plastic heat exchanger; Thermal masses reduction
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1359431121000788-main.pdf

solo utenti autorizzati

Descrizione: Articolo in rivista
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.68 MB
Formato Adobe PDF
4.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact