The increasing alarm of global warming always draws interest in reactions like dry reforming of methane (DRM) where both global warming gases (CO2 and CH4) are converted into value-added chemical building blocks, such as syngas. Nickel catalyst active sites along with support acid-base profiles play a key role in DRM. Herein, xLa2O3+(100-x) Al2O3 (x = 0, 10, 15, 20%) supports are prepared and followed by NiO dispersion over the produced support by impregnation method. It was tested for DRM reaction and characterized with TGA, XRD, TEM, IR, Surface area and porosity measurement, H2-TPR, CO2-TPD and NH3-TPD techniques. Upon increasing the basic lanthana proportion in the acidic alumina support, the crystallinity of alumina and acidity of total support decline. Up to 15% Lanthana addition in support claims a low acid and rich basic surface including super basic sites (related to unidentate carbonates) which governed optimum catalytic performance 64% CH4 conversion, 79% CO2 conversion and H2/CO ~ 1 up to 460-min in time on stream test. 20% lanthanum oxide loading led to inferior performance due to rapid loss of surface area, pore-volume, pore diameter, acidity and medium basic strength sites. Fine-tuning of acid-base lanthana-alumina support with dispersed Ni species are a means for understanding DRM

Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane

Frusteri F;
2021

Abstract

The increasing alarm of global warming always draws interest in reactions like dry reforming of methane (DRM) where both global warming gases (CO2 and CH4) are converted into value-added chemical building blocks, such as syngas. Nickel catalyst active sites along with support acid-base profiles play a key role in DRM. Herein, xLa2O3+(100-x) Al2O3 (x = 0, 10, 15, 20%) supports are prepared and followed by NiO dispersion over the produced support by impregnation method. It was tested for DRM reaction and characterized with TGA, XRD, TEM, IR, Surface area and porosity measurement, H2-TPR, CO2-TPD and NH3-TPD techniques. Upon increasing the basic lanthana proportion in the acidic alumina support, the crystallinity of alumina and acidity of total support decline. Up to 15% Lanthana addition in support claims a low acid and rich basic surface including super basic sites (related to unidentate carbonates) which governed optimum catalytic performance 64% CH4 conversion, 79% CO2 conversion and H2/CO ~ 1 up to 460-min in time on stream test. 20% lanthanum oxide loading led to inferior performance due to rapid loss of surface area, pore-volume, pore diameter, acidity and medium basic strength sites. Fine-tuning of acid-base lanthana-alumina support with dispersed Ni species are a means for understanding DRM
2021
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Acid-basic property; DRM; Lanthana-alumina; Super basic sites
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? ND
social impact