A new synchrotron-based photoionization spectrum of 6,6-dimethylfulvene shows significant vibrational fine structure (VFS), in contrast to previous studies; this was successfully analysed by Franck-Condon (FC) methods. The sequence of ionic states in the range 7 to 19 eV has been determined by both symmetry adapted cluster configuration interaction and density functional methods, especially using the long-range corrected version of the Becke three-parameter hybrid functional (B3LYP) using the Coulomb-attenuating method (CAM-B3LYP). Both lead to reliable theoretical values for both the calculated vertical and adiabatic ionization energies. The FC profile for the lowest ionization energy (IE1, XA) shows extensive VFS which is analysed successfully. The second IE (AB) shows truncated structure owing to overlap with IE.
The ionized states of 6,6-dimethylfulvene; the vibrational energy levels studied by photoionization, configuration interaction and density functional calculations
Coreno Marcello;de Simone Monica;Grazioli Cesare;
2022
Abstract
A new synchrotron-based photoionization spectrum of 6,6-dimethylfulvene shows significant vibrational fine structure (VFS), in contrast to previous studies; this was successfully analysed by Franck-Condon (FC) methods. The sequence of ionic states in the range 7 to 19 eV has been determined by both symmetry adapted cluster configuration interaction and density functional methods, especially using the long-range corrected version of the Becke three-parameter hybrid functional (B3LYP) using the Coulomb-attenuating method (CAM-B3LYP). Both lead to reliable theoretical values for both the calculated vertical and adiabatic ionization energies. The FC profile for the lowest ionization energy (IE1, XA) shows extensive VFS which is analysed successfully. The second IE (AB) shows truncated structure owing to overlap with IE.File | Dimensione | Formato | |
---|---|---|---|
Palmer_CPL2022.pdf
accesso aperto
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.