Thermodynamical consistency of plasticity models is usually written in terms of the so-called "maximum dissipation principle". In this paper, we discuss constitutive relations for dissipative materials written through suitable generalized gradients of a (possibly non-convex) metric. This new framework allows us to generalize the classical results providing an interpretation of the yield function in terms of HamiltonJacobi equations theory.

A metric approach to plasticity via Hamilton-Jacobi equation

F Auricchio;E Bonetti;
2010

Abstract

Thermodynamical consistency of plasticity models is usually written in terms of the so-called "maximum dissipation principle". In this paper, we discuss constitutive relations for dissipative materials written through suitable generalized gradients of a (possibly non-convex) metric. This new framework allows us to generalize the classical results providing an interpretation of the yield function in terms of HamiltonJacobi equations theory.
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Plasticity models
metric associated to Hamilton-Jacobi equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/44314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact