This work presents the outcomes of a numerical analysis based on a 3-D high fidelity model of a realistic microwave imaging system for the clinical follow-up of brain stroke. The analysis is meant as a preliminary step towards the full experimental characterization of the system, with the aim of assessing the achievable results and highlight possible critical points. The system consists of an array of twenty-four printed monopole antennas, placed conformal to the upper part of the head; each monopole is immersed into a semi-solid dielectric brick with custom permittivity, acting as coupling medium. The whole system, including the antennas and their feeding mechanism, has been numerically modeled via a custom full-wave software based on the finite element method. The numerical model generates reliable electromagnetic operators and accurate antenna scattering parameters, which provide the input data for the implemented imaging algorithm. In particular, the numerical analysis assesses the capability of the device of reliably monitoring the evolution of hemorrhages and ischemias, considering the progression from a healthy state to an early-stage stroke.

Assessing a microwave imaging system for brain stroke monitoring via high fidelity numerical modelling

Scapaticci Rosa;Crocco Lorenzo;
2021

Abstract

This work presents the outcomes of a numerical analysis based on a 3-D high fidelity model of a realistic microwave imaging system for the clinical follow-up of brain stroke. The analysis is meant as a preliminary step towards the full experimental characterization of the system, with the aim of assessing the achievable results and highlight possible critical points. The system consists of an array of twenty-four printed monopole antennas, placed conformal to the upper part of the head; each monopole is immersed into a semi-solid dielectric brick with custom permittivity, acting as coupling medium. The whole system, including the antennas and their feeding mechanism, has been numerically modeled via a custom full-wave software based on the finite element method. The numerical model generates reliable electromagnetic operators and accurate antenna scattering parameters, which provide the input data for the implemented imaging algorithm. In particular, the numerical analysis assesses the capability of the device of reliably monitoring the evolution of hemorrhages and ischemias, considering the progression from a healthy state to an early-stage stroke.
2021
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Biomedical imaging
Microwave antenna arrays
Microwave imaging
Microwave propagation
Numerical simulation
Stroke
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? ND
social impact