A novel method is described for remotely interrogating bulk molecular composition of rocky materials. Laser energy heats a local area on the substrate; flux is optimized to melt and evaporate target constituents with low rates of molecular dissociation. Substrate temperature rises until an equilibrium is established between incident flux and latent phase-change energies, reaching similar to 2500 K in vacuum. A blackbody signal is emitted by the heated spot, traveling outward through the evaporated material; reflective optics direct the signal into a spectrometer. Ro-vibrational absorption in the plume provides a diagnostic for identifying bulk molecular composition of the substrate. Absorption spectra are modeled for compounds with available a priori molecular cross-sections, based on laser and receiver characteristics, and target material properties. Mass ejection flux drives the plume density profile. Qualitative, species-specific spectral profiles are derived by integrating molecular cross section along a path through the plume. Simulations indicate robust absorption profiles.

Remote molecular composition analysis of laser-ablated material

Pelizzo Maria G;
2021

Abstract

A novel method is described for remotely interrogating bulk molecular composition of rocky materials. Laser energy heats a local area on the substrate; flux is optimized to melt and evaporate target constituents with low rates of molecular dissociation. Substrate temperature rises until an equilibrium is established between incident flux and latent phase-change energies, reaching similar to 2500 K in vacuum. A blackbody signal is emitted by the heated spot, traveling outward through the evaporated material; reflective optics direct the signal into a spectrometer. Ro-vibrational absorption in the plume provides a diagnostic for identifying bulk molecular composition of the substrate. Absorption spectra are modeled for compounds with available a priori molecular cross-sections, based on laser and receiver characteristics, and target material properties. Mass ejection flux drives the plume density profile. Qualitative, species-specific spectral profiles are derived by integrating molecular cross section along a path through the plume. Simulations indicate robust absorption profiles.
2021
Infrared spectroscopy
laser ablation
molecular spectroscopy
CubeSats
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact