A lightsail accelerated via directed energy is a candidate technology to send a probe into the deep space in a time period compatible with human life. The light emitted by a ground-based large-aperture phased laser array is directed onto the lightsail to produce a thrust by transferring the momentum of the incident photons. Here we demonstrate that optimized multilayer structures allow ultralight spacecraft being accelerated by laser radiation pressure up to 20% of the light velocity, and eventually even above, as long as a compromise between efficiency and weight is achieved. Layer materials are selected to provide high reflectance in the Doppler-shifted laser wavelength range as well as high emissivity in the infrared, this last characteristic being required to survive to the temperature increase during the acceleration phase.

Multilayers for directed energy accelerated lightsails

Alain Jody Corso
Writing – Review & Editing
;
Maria Guglielmina Pelizzo
Ultimo
Conceptualization
2022

Abstract

A lightsail accelerated via directed energy is a candidate technology to send a probe into the deep space in a time period compatible with human life. The light emitted by a ground-based large-aperture phased laser array is directed onto the lightsail to produce a thrust by transferring the momentum of the incident photons. Here we demonstrate that optimized multilayer structures allow ultralight spacecraft being accelerated by laser radiation pressure up to 20% of the light velocity, and eventually even above, as long as a compromise between efficiency and weight is achieved. Layer materials are selected to provide high reflectance in the Doppler-shifted laser wavelength range as well as high emissivity in the infrared, this last characteristic being required to survive to the temperature increase during the acceleration phase.
2022
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Padova
laser propulsion
ligthsail
File in questo prodotto:
File Dimensione Formato  
s43246-022-00240-8 (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact